Приветствую, Самоделкины!
Из этой инструкции вы узнаете, как своими руками собрать импульсный блок питания, который можно использовать практически для любых задач.
Автором данной самоделки является Роман (YouTube канал «Open Frime TV»). Примерно полгода назад Роман уже собирал блок питания на SG3525.
Но тогда автор только начинал изучать импульсную технику и само собой были допущены некоторые ошибки. Но не ошибается только тот, кто ничего не делает. Поэтому данный проект было решено начать с разбора полетов. Итак, первое и самое важное: в любом стабилизированном двухтактном блоке питания должен быть дроссель. Причем этот дроссель должен быть установлен сразу за диодами Шоттки. Без данного компонента схема работает в релейном режиме.
Следующее, чему стоит уделить внимание — это разводка печатной платы. В первом варианте дорожки тонкие и длинные.
В данном же проекте автор сделал все возможное, чтобы уменьшить длину дорожек и по возможности сделать их шире.
Теперь пару слов о характеристиках нового блока питания. Максимальная мощность, которую можно получить при активном охлаждении, составляет порядка 400-500Вт. Данный импульсный источник питания имеет стабилизацию выходного напряжения, а это значит, что пользователь может получить на выходе любое необходимое ему значение.
Само собой, у блока имеется защита от короткого замыкания. И еще одна особенность данного блока питания, это то, что его можно сделать не стабилизированным. Это необходимо если вы используете блок для усилителя, где ШИМ стабилизация вносит свои шумы в звук.
Итак, со всеми особенностями разобрались, предлагаю более детально изучить схему устройства.
За основу автор взял схему Старичка на tl494, где он в качестве усилителя ошибки применил tl431 и завел обратную связь прямо на третью ногу.
Роман сделал то же самое только на SG3525. Выбор пал именно на данную микросхему так как в ее арсенале больше функций, плюс довольно мощный выход, который не нуждается в усилении.
По защите. Тут не все идеально. По-хорошему нужно было ставить трансформатор тока, однако автор хотел максимально упростить блок питания и пришлось от него отказаться.
Транзисторы могут выдержать кратковременную перегрузку по току, а у нас контроль тока идет на каждом такте, так что на следующем уже перегрузки по току не будет, да и короткие замыкания все же случаются довольно редко.
Для большинства из вас данная схема может показаться довольно сложной. Поэтому давайте рассмотрим ее начиная с минимальной обвязки, а затем постепенно перейдем к следующим.
Итак, для старта микросхемы на нее необходимо, во-первых, подать напряжение питания выше 8В, а во-вторых нужны частотозадающие элементы (это конденсатор и 2 резистора).
Расчет частоты производим с помощью программы Старичка.
Наша схема готова к запуску. Подаем напряжение на макетку. Щуп осциллографа располагаем на 14-й вывод.
На осциллографе четко видны прямоугольные импульсы, а это значит, что все отлично — наша микросхема работает.
Если начать вращать потенциометр, то можно заметить, что ширина заполнения меняется.
Для наглядности давайте подключим мультиметр.
Итак, при уменьшении напряжения импульсы становятся короче, а при увеличении напряжения шире. Именно таким образом мы должны организовать стабилизацию.
Ну до стабилизации напряжения мы еще дойдем, а сейчас займемся софтстартом. Для этого подключаем на 8-ой выход через диод конденсатор, заново включаем схему и наблюдаем следующую картину — импульсы плавно увеличиваются.
Диод в данном случае необходим из-за недоработки определенных производителей, так как в некоторых вариациях микросхемы конденсатор софтстарта мешает работе защиты. Поэтому при помощи диода мы отрезаем его от схемы. Разряд конденсатора происходит через резистор на землю.
Теперь пару слов про элементы, которые нуждаются в расчете. Во-первых, это частотозадающая часть.
Далее — шунт цепи нижнего транзистора. Расчет необходимо производить таким образом, чтобы при номинальной нагрузке на нем падало 0,5В.
Для расчета пользуемся законом Ома.
Значение тока получим при расчете трансформатора, оно будет вот тут:
Также необходимо произвести расчет обратной связи. В данном случае она многофункциональная. Если выходное напряжение превышает 35В, то необходимо установить стабилитрон.
А если напряжение менее 35В, то ставим перемычку.
В данном случае автор использовал стабилитрон на 15В.
В этой же цепи необходимо рассчитать резистор ограничивающий ток оптопары до 10мА, формула перед вами:
Также необходимо рассчитать делитель напряжения для tl431. При номинальном напряжении в точки деления должно быть ровно 2,5В.
Принцип работы стабилизации следующий. В начальный момент времени, когда на делителе напряжения меньше 2,5В, tl431 заперта, следовательно, светодиод оптрона не горит и выходной транзистор закрыт, выходное напряжение растет.
Как только на делителе становится 2,5В, внутренний стабилитрон пробивается и через оптопару начинает течь ток и засвечивает диод, а тот в свою очередь приоткрывает транзистор.
Далее напряжение на 9-ой ноге начинает уменьшаться. А раз уменьшается напряжение, то уменьшается ШИМ заполнение. Вот таким вот образом и работает стабилизация. Также к стабилизации можно отнести вот этот нагрузочный резистор:
Данный компонент создает некую нагрузку для стабильной работы блока питания в режиме холостого хода.
Более подробно все необходимые расчеты, а также этапы сборки импульсного источника питания представлены в оригинальном видеоролике автора:
Под всеми греющиеся деталями предусмотрены специальные отверстия для охлаждения. Место под радиатор такое, что сюда отлично подходит радиатор от компьютерного блока питания.
Сама плата односторонняя, но выводя гербер файл, было решено добавить верхний слой, чисто для красоты.
Приступаем к запаиванию компонентов платы, это не займет много времени.
А вот далее нам предстоит самое трудное — намотка силового трансформатора. Но сперва его необходимо рассчитать. Все расчеты производим в программе все того же Старичка. Вводим все необходимые данные, а также указываем, что хотим получить на выходе, а именно напряжение и мощность, в этом нет ничего сложного.
Приступаем непосредственно к намотке. Первичку делим на 2 части.
Все обмотки мотаем в одну сторону, начало и конец изображены на печатной плате, сложности в намотке возникнуть не должно.
Далее приступаем к расчету и намотке следующего трансформатора. Расчет выполняется в той же самой программе, только изменяем некоторые параметры, в частности тип преобразователя, в нашем случае будет мост, так как к трансформатору приложено полное напряжение.
При намотке этого трансформатора стараемся уместить обмотки в один слой.
Далее мотаем выходной дроссель. Его необходимо также рассчитать и намотать на кольце из порошкового железа.
В намотке дросселя нет ничего сложного, тут главное распределить обмотку равномерно по всему кольцу.
И осталось изготовить входной дроссель.
На этом сборка полностью завершена, можно приступать к тестам.
Стабилизация выходного напряжения отрабатывает как положено. Защита от КЗ тоже в полном порядке, блок продолжает работать в штатном режиме.
На этом все. Благодарю за внимание. До новых встреч!